tvm.ir¶
Common data structures across all IR variants.
Classes:
|
Relay ADT constructor. |
|
Stores the definition for an Algebraic Data Type (ADT) in Relay. |
|
The quantized type of a tensor, with scale, zero point, and datatype |
|
Affine types of a node with multiple outputs |
Attribute node, which is mainly use for defining attributes of relay operators. |
|
Dictionary attributes. |
|
Environment function. |
|
Base class of all IR Nodes, implements astext function. |
|
|
A identifier for a source location. |
|
Specifies a location in a source program. |
Array container of TVM. |
|
Map container of TVM. |
|
Base class of all the expressions. |
|
|
A global variable in the IR. |
Base class of all primitive expressions. |
|
|
Represent a range in TVM. |
Base class of all non-primitive expressions. |
|
Base class of all functions. |
|
|
Possible kinds of calling conventions. |
|
This object contains a list of ConstantPoolInfo objects to be used as read-only memory in the compilation |
|
ConstantPoolInfo object holds information related to RO memory pools where the statically sized allocate nodes are pooled into. |
|
PoolInfo object holds information related to memory pools where the statically sized allocate nodes will pooled into. |
|
PoolInfo object holds information related to memory pools where the statically sized allocate nodes will pooled into. |
|
This object contains a list of WorkspacePoolInfo objects to be used as workspace memory in the compilation |
|
WorkspacePoolInfo object holds information related to RW memory pools where the statically sized allocate nodes will pooled into. |
|
IRModule that holds functions and type definitions. |
|
Primitive operator in the IR. |
|
A concrete TensorType in Relay. |
|
Function type. |
|
A global type variable that is used for defining new types or type aliases. |
|
Incomplete type during type inference. |
|
PointerType used in the low-level TIR. |
|
Primitive data type in the low level IR |
|
Reference Type in relay. |
|
The type of tuple values. |
The base class of all types. |
|
Abstract class representing a type constraint. |
|
|
Possible kinds of TypeVars. |
|
Type parameter in functions. |
|
Type function application. |
|
User defined type relation, it is an input-output relation on types. |
Functions:
|
Make a new IR node by its type key and fields |
|
Assert lhs and rhs are structurally equal to each other. |
|
Load tvm object from json_str. |
|
Save tvm object as json string. |
|
Check structural equality of lhs and rhs. |
|
Compute structural hash of node |
|
Register Op lowering function |
|
Register an operator property of an operator by name. |
- class tvm.ir.Constructor(name_hint, inputs, belong_to)¶
Relay ADT constructor.
- Parameters
name_hint (str) – Name of constructor (only a hint).
inputs (List[Type]) – Input types.
belong_to (GlobalTypeVar) – Denotes which ADT the constructor belongs to.
- class tvm.ir.TypeData(header, type_vars, constructors)¶
Stores the definition for an Algebraic Data Type (ADT) in Relay.
Note that ADT definitions are treated as type-level functions because the type parameters need to be given for an instance of the ADT. Thus, any global type var that is an ADT header needs to be wrapped in a type call that passes in the type params.
- Parameters
header (GlobalTypeVar) – The name of the ADT. ADTs with the same constructors but different names are treated as different types.
type_vars (List[TypeVar]) – Type variables that appear in constructors.
constructors (List[Constructor]) – The constructors for the ADT.
- class tvm.ir.TensorAffineType(scale, zero_point, dtype, axis=- 1)¶
The quantized type of a tensor, with scale, zero point, and datatype
The real space value is calculated as x = x_q * scale + zero_point
- class tvm.ir.TupleAffineType(types)¶
Affine types of a node with multiple outputs
- Parameters
types (List[TensorAffineType]) – The shape of the Tensor
- class tvm.ir.Attrs¶
Attribute node, which is mainly use for defining attributes of relay operators.
Used by function registered in python side, such as compute, schedule and alter_layout. Attrs is passed as the first argument to these functions.
Methods:
Get fields information
keys
()Get list of names in the attribute.
get_int_tuple
(key)Get a python int tuple of a key
get_int
(key)Get a python int value of a key
get_str
(key)Get a python int value of a key
- list_field_info()¶
Get fields information
- Returns
infos – List of field information
- Return type
list of AttrFieldInfo
- keys()¶
Get list of names in the attribute.
- Returns
keys – List of keys
- Return type
list of str
- class tvm.ir.DictAttrs¶
Dictionary attributes.
Methods:
keys
()Get list of names in the attribute.
items
()Get items from the map.
- keys()¶
Get list of names in the attribute.
- Returns
keys – List of keys
- Return type
list of str
- items()¶
Get items from the map.
- tvm.ir.make_node(type_key, **kwargs)¶
Make a new IR node by its type key and fields
- Parameters
- Returns
node – The corresponding IR Node
- Return type
Note
If the created node is instance of AttrsNode, then the creator function will also run bound checks and default value setup as supported by Attrs.
Example
The following code constructs a IntImm object
x = tvm.ir.make_node("IntImm", dtype="int32", value=10) assert isinstance(x, tvm.tir.IntImm) assert x.value == 10
- class tvm.ir.EnvFunc¶
Environment function.
This is a global function object that can be serialized by its name.
Methods:
get
(name)Get a static env function
- class tvm.ir.Node¶
Base class of all IR Nodes, implements astext function.
- class tvm.ir.SourceName(name)¶
A identifier for a source location.
- Parameters
name (str) – The name of the source.
- class tvm.ir.Span(source_name, line, end_line, column, end_column)¶
Specifies a location in a source program.
- Parameters
source (SourceName) – The source name.
lineno (int) – The line number.
col_offset (int) – The column offset of the location.
- tvm.ir.assert_structural_equal(lhs, rhs, map_free_vars=False)¶
Assert lhs and rhs are structurally equal to each other.
- Parameters
:raises ValueError : if assertion does not hold.:
See also
- tvm.ir.load_json(json_str) tvm.runtime.object.Object ¶
Load tvm object from json_str.
- tvm.ir.structural_equal(lhs, rhs, map_free_vars=False)¶
Check structural equality of lhs and rhs.
The structural equality is recursively defined in the DAG of IRNodes. There are two kinds of nodes:
Graph node: a graph node in lhs can only be mapped as equal to one and only one graph node in rhs.
Normal node: equality is recursively defined without the restriction of graph nodes.
Vars(tir::Var, TypeVar) and non-constant relay expression nodes are graph nodes. For example, it means that %1 = %x + %y; %1 + %1 is not structurally equal to %1 = %x + %y; %2 = %x + %y; %1 + %2 in relay.
A var-type node(e.g. tir::Var, TypeVar) can be mapped as equal to another var with the same type if one of the following condition holds:
They appear in a same definition point(e.g. function argument).
They points to the same VarNode via the same_as relation.
They appear in a same usage point, and map_free_vars is set to be True.
The rules for var are used to remap variables occurs in function arguments and let-bindings.
- Parameters
- Returns
result – The comparison result.
- Return type
See also
structural_hash
,assert_strucural_equal
- tvm.ir.structural_hash(node, map_free_vars=False)¶
Compute structural hash of node
The structural hash value is recursively defined in the DAG of IRNodes. There are two kinds of nodes:
Normal node: the hash value is defined by its content and type only.
Graph node: each graph node will be assigned a unique index ordered by the first occurence during the visit. The hash value of a graph node is combined from the hash values of its contents and the index.
structural_hash is made to be concistent with structural_equal. If two nodes are structurally equal to each other, then their structural hash (with the same map_free_vars option) should be equal to each other as well.
If the structural hash of two nodes equals to each other, then it is highly likely(except for rare hash value collison cases) that the two nodes are structurally equal to each other.
- Parameters
- Returns
result – The hash result
- Return type
See also
structrual_equal
- class tvm.ir.Array¶
Array container of TVM.
You do not need to create Array explicitly. Normally python list and tuple will be converted automatically to Array during tvm function call. You may get Array in return values of TVM function call.
- class tvm.ir.Map¶
Map container of TVM.
You do not need to create Map explicitly. Normally python dict will be converted automatically to Map during tvm function call. You can use convert to create a dict[Object-> Object] into a Map
Methods:
items
()Get the items from the map
get
(key[, default])Get an element with a default value.
- items()¶
Get the items from the map
- class tvm.ir.BaseExpr¶
Base class of all the expressions.
- class tvm.ir.GlobalVar(name_hint, type_annot=None)¶
A global variable in the IR.
GlobalVar is used to refer to the global functions stored in the IRModule.
- Parameters
name_hint (str) – The name of the variable.
Methods:
astext
([show_meta_data, annotate])Get the text format of the expression.
- astext(show_meta_data=True, annotate=None)¶
Get the text format of the expression.
- Parameters
show_meta_data (bool) – Whether to include meta data section in the text if there is meta data.
annotate (Optional[Object->str]) – Optionally annotate function to provide additional information in the comment block.
- Returns
text – The text format of the expression.
- Return type
Notes
The meta data section is necessary to fully parse the text format. However, it can contain dumps that are big (e.g constant weights), so it can be helpful to skip printing the meta data section.
- class tvm.ir.PrimExpr¶
Base class of all primitive expressions.
PrimExpr is used in the low-level code optimizations and integer analysis.
- class tvm.ir.Range(begin, end=None, span=None)¶
Represent a range in TVM.
You do not need to create a Range explicitly. Python lists and tuples will be converted automatically to a Range in API functions.
- Parameters
Note
The constructor creates the range [begin, end) if the end argument is not None. Otherwise, it creates [0, begin).
Methods:
from_min_extent
(min_value, extent[, span])Construct a Range by min and extent.
- static from_min_extent(min_value, extent, span=None)¶
Construct a Range by min and extent.
This constructs a range in [min_value, min_value + extent)
- class tvm.ir.RelayExpr¶
Base class of all non-primitive expressions.
Attributes:
Get the checked type of tvm.relay.Expr.
- property checked_type¶
Get the checked type of tvm.relay.Expr.
- Returns
checked_type – The checked type.
- Return type
tvm.relay.Type
- class tvm.ir.BaseFunc¶
Base class of all functions.
Attributes:
Return the attrs member of the function.
Methods:
with_attr
(attr_key_or_dict[, attr_value])Create a new copy of the function and update the attribute.
- property attrs¶
Return the attrs member of the function.
- with_attr(attr_key_or_dict, attr_value=None)¶
Create a new copy of the function and update the attribute.
- class tvm.ir.CallingConv(value)¶
Possible kinds of calling conventions.
- class tvm.ir.ConstantMemoryPools(pools: List[tvm.ir.memory_pools.ConstantPoolInfo])¶
This object contains a list of ConstantPoolInfo objects to be used as read-only memory in the compilation
- Parameters
pools (List[ConstantPoolInfo]) – The list of ConstantPoolInfo objects to be used with the compilation
- class tvm.ir.ConstantPoolInfo(pool_name: str, targets, constant_info_arr=None, pool_info_properties=None)¶
ConstantPoolInfo object holds information related to RO memory pools where the statically sized allocate nodes are pooled into.
- Parameters
pool_name (str) – The name of the memory pool
targets (list[Target]) – describes which targets could access the pool
pool_info_properties (PoolInfoProperties) – The properties of the pool.
- class tvm.ir.PoolInfo¶
PoolInfo object holds information related to memory pools where the statically sized allocate nodes will pooled into. This is a base class for WorkspacePoolInfo and ConstantPoolInfo.
- class tvm.ir.PoolInfoProperties(size_hint_bytes: Optional[int] = - 1, clock_frequency_hz: Optional[int] = - 1, read_bandwidth_bytes_per_cycle: Optional[int] = - 1, write_bandwidth_bytes_per_cycle: Optional[int] = - 1, read_latency_cycles: Optional[int] = 0, write_latency_cycles: Optional[int] = 0, target_burst_bytes=None)¶
PoolInfo object holds information related to memory pools where the statically sized allocate nodes will pooled into.
- Parameters
size_hint_bytes (Optional[int]) – The expected size hint to be used by the allocator. The default value would be -1 which means the pool is not size restricted.
clock_frequency_hz (Optional[int]) – The clock frequency that the memory pool runs at in Hz. If not specified/known, this will default to -1 indicating it hasn’t been defined.
read_bandwidth_bytes_per_cycle (Optional[int]) – The read bandwidth of the memory pool in bytes/cycle. If not specified/known, this will default to -1 indicating it hasn’t been defined.
write_bandwidth_bytes_per_cycle (Optional[int]) – The write bandwidth of the memory pool in bytes/cycle. If not specified/known, this will default to -1 indicating it hasn’t been defined.
read_latency_cycles (Optional[int]) – The read latency of the memory pool in cycles. If not specified/known, this will default to 0.
write_latency_cycles (Optional[int]) – The write latency of the memory pool in cycles. If not specified/known, this will default to 0.
target_burst_bytes (Optional[Union[Dict[Target, int], None]]) – The burst length of the memory pool in bytes per target. If not specified/known for a given target, a burst length of 1 byte will be assumed.
- class tvm.ir.WorkspaceMemoryPools(pools: List[tvm.ir.memory_pools.WorkspacePoolInfo])¶
This object contains a list of WorkspacePoolInfo objects to be used as workspace memory in the compilation
- Parameters
pools (List[WorkspacePoolInfo]) – The list of ConstantPoolInfo objects to be used with the compilation
- class tvm.ir.WorkspacePoolInfo(pool_name: str, targets, pool_info_properties=None)¶
WorkspacePoolInfo object holds information related to RW memory pools where the statically sized allocate nodes will pooled into.
- Parameters
pool_name (str) – The name of the memory pool
targets (list[Target]) – A list of targets which could access the pool
pool_info_properties (PoolInfoProperties) – The properties of the pool.
- class tvm.ir.IRModule(functions=None, type_definitions=None)¶
IRModule that holds functions and type definitions.
IRModule is the basic unit for all IR transformations across the stack.
- Parameters
functions (Optional[dict]) – Map of global var to BaseFunc
Methods:
update
(other)Insert functions in another Module to current one.
update_func
(var, func)Update the function corresponding to a global variable in the module.
get_global_var
(name)Get a global variable in the function by name.
Collect all global vars defined in this module.
Collect all global type vars defined in this module.
get_global_type_var
(name)Get a global type variable in the function by name.
get_constructor
(tag)Look up an ADT constructor by tag.
from_expr
(expr[, functions, type_defs])Construct a module from a standalone expression.
get_attr
(attr_key)Get the IRModule attribute.
with_attr
(attr_key, attr_value)Copy the IRModule and add an attribute to it.
astext
([show_meta_data, annotate])Get the text format of the expression.
script
(*[, indent_spaces, ...])Print IRModule into TVMScript
show
(*[, style, black_format, ...])A sugar for print highlighted TVM script.
- update(other)¶
Insert functions in another Module to current one.
- Parameters
other (IRModule) – The module to merge into the current Module.
- update_func(var, func)¶
Update the function corresponding to a global variable in the module.
- Parameters
var (GlobalVar) – The global variable.
func (tvm.relay.Function) – The function to be inserted.
- get_global_var(name)¶
Get a global variable in the function by name.
- get_global_vars()¶
Collect all global vars defined in this module.
- get_global_type_vars()¶
Collect all global type vars defined in this module.
- Returns
global_type_vars – An array of global type vars.
- Return type
- get_global_type_var(name)¶
Get a global type variable in the function by name.
- Parameters
name (str) – The name of the global type variable.
- Returns
global_type_var – The global variable mapped to
name
.- Return type
- Raises
tvm.error.TVMError if we cannot find corresponding global type var. –
- get_constructor(tag)¶
Look up an ADT constructor by tag.
- Parameters
tag (int) – The tag for a constructor.
- Returns
constructor – The constructor associated with the given tag,
- Return type
- Raises
tvm.error.TVMError if the corresponding constructor cannot be found. –
- static from_expr(expr, functions=None, type_defs=None)¶
Construct a module from a standalone expression.
- Parameters
- Returns
mod – A module containing the passed definitions, where expr is set as the entry point (wrapped in a function if necessary)
- Return type
- get_attr(attr_key)¶
Get the IRModule attribute.
- with_attr(attr_key, attr_value)¶
Copy the IRModule and add an attribute to it.
- astext(show_meta_data=True, annotate=None)¶
Get the text format of the expression.
- Parameters
show_meta_data (bool) – Whether to include meta data section in the text if there is meta data.
annotate (Optional[Object->str]) – Optionally annotate function to provide additional information in the comment block.
- Returns
text – The text format of the expression.
- Return type
Notes
The meta data section is necessary to fully parse the text format. However, it can contain dumps that are big (e.g constant weights), so it can be helpful to skip printing the meta data section.
- script(*, indent_spaces: int = 4, print_line_numbers: bool = False, num_context_lines: Optional[int] = None, path_to_underline=None) str ¶
Print IRModule into TVMScript
- Parameters
indent_spaces (int) – The number of indent spaces to use in the output
print_line_numbers (bool) – Whether to print line numbers
num_context_lines (Optional[int]) – Number of context lines to print around the underlined text
path_to_underline (Optional[ObjectPath]) – Object path to be underlined
- Returns
script – The TVM Script of the IRModule
- Return type
- show(*, style: Optional[str] = None, black_format: bool = True, indent_spaces: int = 4, print_line_numbers: bool = False, num_context_lines: Optional[int] = None, path_to_underline=None) None ¶
A sugar for print highlighted TVM script.
- Parameters
style (str, optional) – Pygmentize printing style, auto-detected if None. See tvm.script.highlight.cprint for more details.
black_format (bool) – If true (default), use the formatter Black to format the TVMScript
indent_spaces (int) – The number of indent spaces to use in the output
print_line_numbers (bool) – Whether to print line numbers
num_context_lines (Optional[int]) – Number of context lines to print around the underlined text
path_to_underline (Optional[ObjectPath]) – Object path to be underlined
- class tvm.ir.Op¶
Primitive operator in the IR.
Methods:
astext
([show_meta_data, annotate])Get the text format of the expression.
get
(op_name)Get the Op for a given name
get_attr
(attr_name)Get additional attribute about the operator.
has_attr
(attr_name)Check whether the operator has additional attribute.
set_attr
(attr_name, value[, plevel])Set attribute about the operator.
reset_attr
(attr_name)Reset attribute about the operator.
add_type_rel
(rel_name[, type_rel_func])Attach the type function corresponding to the return type.
add_argument
(name, type, description)Add arguments information to the function.
set_support_level
(level)Set the support level of op.
Set the support level of op.
set_attrs_type_key
(key)Set the attribute type key of op.
List all the op names in the op registry.
- astext(show_meta_data=True, annotate=None)¶
Get the text format of the expression.
- Parameters
show_meta_data (bool) – Whether to include meta data section in the text if there is meta data.
annotate (Optional[Object->str]) – Optionally annotate function to provide additional information in the comment block.
- Returns
text – The text format of the expression.
- Return type
Notes
The meta data section is necessary to fully parse the text format. However, it can contain dumps that are big (e.g constant weights), so it can be helpful to skip printing the meta data section.
- static get(op_name)¶
Get the Op for a given name
- get_attr(attr_name)¶
Get additional attribute about the operator.
- has_attr(attr_name)¶
Check whether the operator has additional attribute.
- set_attr(attr_name, value, plevel=10)¶
Set attribute about the operator.
- reset_attr(attr_name)¶
Reset attribute about the operator.
- Parameters
attr_name (str) – The attribute name
- add_type_rel(rel_name, type_rel_func=None)¶
Attach the type function corresponding to the return type.
- Parameters
rel_name (str) – The type relation name to register.
type_rel_func (Optional[function (args: List[Type], attrs: Attrs) -> Type]) –
The backing relation function which can solve an arbitrary relation on variables. Differences with type_rel_func in C++:
When type_rel_func is not None
OpAddTypeRel on C++ side will adjust type_rel_func with TypeReporter to calling convention of relay type system.
type_rel_func returns output argument’s type, return None means can’t infer output’s type.
only support single output operators for now, the last argument is output tensor.
- when type_rel_func is None, will call predefined type_rel_funcs in relay
according to
tvm.relay.type_relation.
+ rel_name.
- add_argument(name, type, description)¶
Add arguments information to the function.
- tvm.ir.register_intrin_lowering(op_name, target, *, f=None, level=10)¶
Register Op lowering function
- tvm.ir.register_op_attr(op_name, attr_key, value=None, level=10)¶
Register an operator property of an operator by name.
- class tvm.ir.TensorType(shape, dtype='float32')¶
A concrete TensorType in Relay.
This is the type assigned to tensors with a known dtype and shape. For example, a tensor of float32 and (5, 5).
- Parameters
shape (List[tvm.ir.PrimExpr]) – The shape of the Tensor
dtype (Optional[str]) – The content data type.
Attributes:
Get shape of the type as concrete tuple of int.
- class tvm.ir.FuncType(arg_types, ret_type, type_params=None, type_constraints=None)¶
Function type.
A function type consists of a list of type parameters to enable the definition of generic functions, a set of type constraints which we omit for the time being, a sequence of argument types, and a return type.
We can informally write them as: forall (type_params), (arg_types) -> ret_type where type_constraints
- Parameters
arg_types (List[tvm.relay.Type]) – The argument types
ret_type (tvm.relay.Type) – The return type.
type_params (Optional[List[tvm.relay.TypeVar]]) – The type parameters
type_constraints (Optional[List[tvm.relay.TypeConstraint]]) – The type constraints.
- class tvm.ir.GlobalTypeVar(name_hint, kind=TypeKind.AdtHandle)¶
A global type variable that is used for defining new types or type aliases.
- class tvm.ir.IncompleteType(kind=TypeKind.Type)¶
Incomplete type during type inference.
- kindOptional[TypeKind]
The kind of the incomplete type.
- class tvm.ir.PointerType(element_type, storage_scope='')¶
PointerType used in the low-level TIR.
- Parameters
element_type (tvm.ir.Type) – The type of pointer’s element.
storage_scope (str) – The storage scope into which the pointer addresses.
- class tvm.ir.PrimType(dtype)¶
Primitive data type in the low level IR
- Parameters
dtype (str) – The runtime data type relates to the primtype.
- class tvm.ir.RelayRefType(value)¶
Reference Type in relay.
- Parameters
value (Type) – The value type.
- class tvm.ir.TupleType(fields)¶
The type of tuple values.
- Parameters
fields (List[Type]) – The fields in the tuple
- class tvm.ir.Type¶
The base class of all types.
Methods:
same_as
(other)Compares two Relay types by referential equality.
- same_as(other)¶
Compares two Relay types by referential equality.
- class tvm.ir.TypeConstraint¶
Abstract class representing a type constraint.
- class tvm.ir.TypeKind(value)¶
Possible kinds of TypeVars.
- class tvm.ir.TypeVar(name_hint, kind=TypeKind.Type)¶
Type parameter in functions.
A type variable represents a type placeholder which will be filled in later on. This allows the user to write functions which are generic over types.
- class tvm.ir.TypeCall(func, args)¶
Type function application.
- Parameters
func (tvm.ir.Type) – The function.
args (List[tvm.ir.Type]) – The arguments.
- Returns
type_call – The type function application.
- Return type
- class tvm.ir.TypeRelation(func, args, num_inputs, attrs)¶
User defined type relation, it is an input-output relation on types.
- TypeRelation is more generalized than TypeCall as it allows inference
of both inputs and outputs.
- Parameters
func (EnvFunc) – User defined relation function.
args ([tvm.ir.Type]) – List of types to the func.
num_inputs (int) – Number of input arguments in args, this act as a hint for type inference.
attrs (Attrs) – The attribute attached to the relation information
- Returns
type_relation – The type relation.
- Return type
tvm.instrument¶
Common pass instrumentation across IR variants.
Classes:
A pass instrument implementation. |
|
A wrapper to create a passes time instrument that implemented in C++ |
Functions:
|
Decorate a pass instrument. |
- class tvm.instrument.PassInstrument¶
A pass instrument implementation.
To use, a user class can either subclass from PassInstrument directly, or can apply the
pass_instrument()
wrapper. In either case, the enter_pass_ctx, exit_pass_ctx, should_run, run_before_pass, and run_after_pass methods can be defined to adjust the instrument’s behavior. See the no-op implementations in this class definition for more information on each.Methods:
Called when entering the instrumented context.
Called when exiting the instrumented context.
should_run
(mod, info)Determine whether to run the pass or not.
run_before_pass
(mod, info)Instrument before the pass runs.
run_after_pass
(mod, info)Instrument after the pass runs.
- should_run(mod, info)¶
Determine whether to run the pass or not.
Called once for each pass that is run while the instrumented context is active.
- Parameters
mod (tvm.ir.module.IRModule) – The module on which an optimization pass is being run.
info (tvm.transform.PassInfo) – The pass information.
- Returns
should_run – True to run the pass, or False to skip the pass.
- Return type
- run_before_pass(mod, info)¶
Instrument before the pass runs.
Called once for each pass that is run while the instrumented context is active.
- Parameters
mod (tvm.ir.module.IRModule) – The module on which an optimization pass is being run.
info (tvm.transform.PassInfo) – The pass information.
- Returns
- Return type
- run_after_pass(mod, info)¶
Instrument after the pass runs.
Called once for each pass that is run while the instrumented context is active.
- Parameters
mod (tvm.ir.module.IRModule) – The module on which an optimization pass is being run.
info (tvm.transform.PassInfo) – The pass information.
- Returns
- Return type
- class tvm.instrument.PassTimingInstrument¶
A wrapper to create a passes time instrument that implemented in C++
Methods:
render
()Retrieve rendered time profile result :returns: string -- The rendered string result of time profiles :rtype: string
- static render()¶
Retrieve rendered time profile result :returns: string – The rendered string result of time profiles :rtype: string
Examples
timing_inst = PassTimingInstrument() with tvm.transform.PassContext(instruments=[timing_inst]): relay_mod = relay.transform.InferType()(relay_mod) relay_mod = relay.transform.FoldScaleAxis()(relay_mod) # before exiting the context, get profile results. profiles = timing_inst.render()
- tvm.instrument.pass_instrument(pi_cls=None)¶
Decorate a pass instrument.
- Parameters
pi_class (class) – Instrument class. See example below.
Examples
@tvm.instrument.pass_instrument class SkipPass: def __init__(self, skip_pass_name): self.skip_pass_name = skip_pass_name # Uncomment to customize # def enter_pass_ctx(self): # pass # Uncomment to customize # def exit_pass_ctx(self): # pass # If pass name contains keyword, skip it by return False. (return True: not skip) def should_run(self, mod, pass_info) if self.skip_pass_name in pass_info.name: return False return True # Uncomment to customize # def run_before_pass(self, mod, pass_info): # pass # Uncomment to customize # def run_after_pass(self, mod, pass_info): # pass skip_annotate = SkipPass("AnnotateSpans") with tvm.transform.PassContext(instruments=[skip_annotate]): tvm.relay.build(mod, "llvm")
tvm.transform¶
Common pass infrastructure across IR variants.
Classes:
A pass that works on tvm.IRModule. |
|
The base class of all passes. |
|
|
The basis where a Relay optimization/analysis runs on. |
|
The class contains the meta data required by a pass. |
|
A pass that works on a sequence of pass objects. |
Functions:
|
A special trace pass that prints the header and IR. |
|
Decorate a module pass. |
- class tvm.transform.ModulePass¶
A pass that works on tvm.IRModule. Users don’t need to interact with this class directly. Instead, a module pass should be created through module_pass, because the design of the module_pass API is flexible enough to handle the creation of a module pass in different manners. In addition, all members of a module pass can be accessed from the base class. The same rule applies to FunctionPass as well.
- class tvm.transform.Pass¶
The base class of all passes. All methods here are just simple wrappers that are implemented in the backend. They are defined for users to conveniently interact with the base class.
Attributes:
Get the pass meta.
- property info¶
Get the pass meta.
- class tvm.transform.PassContext(opt_level=2, required_pass=None, disabled_pass=None, instruments=None, config=None)¶
The basis where a Relay optimization/analysis runs on. Each pass context contains a number of auxiliary information that is used to help an optimization pass. Such information includes the error reporter to record the errors of during the optimization, etc.
- opt_levelOptional[int]
The optimization level of this pass.
- required_passOptional[Union[List[str], Set[str], Tuple[str]]]
The list of passes that are required by a certain pass.
- disabled_passOptional[Union[List[str], Set[str], Tuple[str]]]
The list of passes that are disabled.
- instrumentsOptional[Sequence[PassInstrument]]
The list of pass instrument implementations.
- configOptional[Dict[str, Object]]
Additional configurations for specific passes.
Methods:
override_instruments
(instruments)Override instruments within this PassContext.
current
()Return the current pass context.
List all registered PassContext configuration names and metadata.
- override_instruments(instruments)¶
Override instruments within this PassContext.
If there are existing instruments, their
exit_pass_ctx
callbacks are called. Then switching to new instruments and calling newenter_pass_ctx
callbacks.- instrumentsSequence[PassInstrument]
The list of pass instrument implementations.
- static current()¶
Return the current pass context.
- class tvm.transform.PassInfo(opt_level, name, required=None)¶
The class contains the meta data required by a pass. It is the container of information needed by running an optimization or analysis. This class can be extended by adding new members when more meta data is needed.
- tvm.transform.PrintIR(header='', show_meta_data=False)¶
A special trace pass that prints the header and IR.
- class tvm.transform.Sequential(passes=None, opt_level=0, name='sequential', required=None)¶
A pass that works on a sequence of pass objects. Multiple passes can be executed sequentially using this class.
Note that users can also provide a series of passes that they don’t want to apply when running a sequential pass. Pass dependency will be resolved in the backend as well.
- Parameters
passes (Optional[List[Pass]]) – A sequence of passes candidate for optimization.
opt_level (Optional[int]) – The optimization level of this sequential pass. The opt_level of a default sequential pass is set to 0. Note that some of the passes within the Sequantial may still not be executed if their opt_level is higher than the provided opt_level.
name (Optional[str]) – The name of the sequential pass.
required (Optional[List[str]]) – The list of passes that the sequential pass is dependent on.
- tvm.transform.module_pass(pass_func=None, opt_level=None, name=None, required=None)¶
Decorate a module pass.
This function returns a callback when pass_func is provided. Otherwise, it serves a decorator function.
pass_func can also be a class type with a method transform_module. This function will create a decorated ModulePass using transform_module as the pass function.
- Parameters
pass_func (Optional[Callable[(Module, PassContext) ->Module]]) – The transformation function or class.
opt_level (int) – The optimization level of this module pass.
name (Optional[str]) – The name of the module pass. The name could be empty. In this case, the name of the optimization function will be used as the pass name.
required (Optional[List[str]]) – The list of passes that the module pass is dependent on.
- Returns
create_module_pass – A decorator will be returned if pass_func is not provided, otherwise return the decorated result. The returned decorator has two behaviors depending on the input: A new ModulePass will be returned when we decorate a pass function. A new ModulePass class will be returned when we decorate a class type.
- Return type
Union[Callable, ModulePass]
Examples
The following code block decorates a module pass class.
@relay.transform.module_pass class CustomPipeline: def __init__(self, enable_fold): self.enable_fold = enable_fold self.cse = relay.transform.EliminateCommonSubexpr() self.const_fold = relay.transform.FoldConstant() def transform_module(self, mod, ctx): mod = self.cse(mod, ctx) if self.enable_fold: mod = self.const_fold(mod, ctx) return mod # create an instance of customized pipeline pipeline = CustomPipeline(enable_fold=False) assert isinstance(pipeline, transform.ModulePass) # run the pipeline. output_module = pipeline(input_module)
The following code creates a module pass by decorating a user defined transform function.
@relay.transform.module_pass(opt_level=2) def transform(mod, ctx): tp = relay.TensorType((10,), "float32") x = relay.var("x", tp) gv = relay.GlobalVar("var") func = relay.Function([x], relay.abs(x)) new_mod = tvm.IRModule({gv: func}) new_mod.update(mod) return new_mod module_pass = transform assert isinstance(module_pass, transform.ModulePass) assert module_pass.info.opt_level == 2 # Given a module m, the optimization could be invoked as the follwoing: updated_mod = module_pass(m) # Now a function abs should be added to the module m.